

The Case for Future ep Physics at eRHIC

Marco Stratmann

organizers: D. Boer, M. Diehl, R. Milner, R. Venugopalan, W. Vogelsang

convenors: D. Hasch, M.S., F. Yuan (spin & PDFs); M. Burkardt, V. Guzey, F. Sabatie (imaging); A. Accardi, M. Lamont, C. Marquet (eA); K. Kumar, Y. Li, W. Marciano (beyond SM)

main goal: sharpen the physics case for an EIC for next NSAC long range plan

- identify outstanding open questions in hadronic physics still relevant in 10+ years
- devise key measurements in ep and eA to address these questions
- quantify experimental needs, requirements, and feasibility

this talk: ep physics is a vast field --> concentrate only on the most compelling measurements at a future EIC

detailed write up is currently put together - to appear on the arXiv

main theme: HERA an unfinished business

16yrs of data taking leave a rich legacy of knowledge & by now textbook results (steep rise of F_2 ; small-x gluons, diffraction, e-w effects, photoproduction, spin structure, ...)

so, what did we miss which is still of interest in 2020+?

spin structure "only" studied in fixed-target regime (HERMES, ...)

"only" proton beams - neutron structure ? - nuclei ?

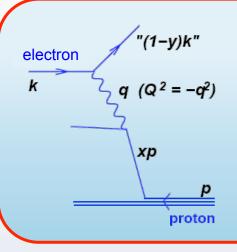
 $L = 500 \text{ pb}^{-1}$ and variation of E_p not sufficient to really study F_L

completely unfold flavor & spin structure: JLab12? LHC?

strangeness & $s - \overline{s}$ asymmetry? - d/u and the gluon @ large-x?

concepts/processes introduced but neither fully explored nor understood:

GPDs, unintegrated PDFs, diffraction, role of heavy flavors,


photoproduction, electroweak physics in ep, semi-inclusive processes, ...

considerable overlap with physics agenda of a possible LHeC

KINEMATIC COVERAGE

key to eRHIC program: large & variable kinematic coverage



recall: DIS kinematics

$$Q^2 = xyS$$
$$x = \frac{Q^2}{2p \cdot q}$$

$$y = \frac{p \cdot q}{p \cdot k}$$

- Q^2 : proton virtuality \leftrightarrow resolution $r \sim 1/Q$ at which the proton is probed
- x: longitudinal momentum fraction of struck parton in the proton
- y: momentum fraction lost by electron in the proton rest frame

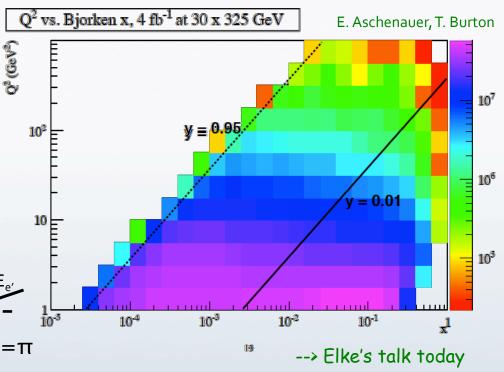
eRHIC stage-1:

5x50, 5x100, ..., **5x250**, **5x325**

$$\sqrt{S} = 32$$
 45 71 81 $x_{\rm min} \approx 10^{-3}$ 2×10^{-4} 1.6 \times 10⁻⁴ small x pol. DIS

 \leftarrow lever arm for $F_L \longrightarrow$

eRHIC: up to 30x325

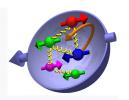

$$\sqrt{S} = 198$$
$$x_{\min} \approx 2.7 \times 10^{-5}$$

kinematics - a closer look, issues

- find out how low in y we can go
 - increase x, Q^2 coverage for each S
 - more overlap between different S
 - more lever-arm for Q^2 evolution at fixed x
 - upper y cut has much less impact
- tagging of the scattered electron

$$Q^2 = 2E_e E_{e'} (1 + \cos \theta_{e'}) \quad \underline{\mathsf{E}_{\mathsf{e}}} \quad \underline{\mathsf{\Theta}_{\mathsf{e'}}} \quad \underline{\mathsf{E}_{\mathsf{e'}}}$$

- need to detect electrons at forward $\Theta = \pi$
- most "severe" for $Q^2 \approx 0$ (photoprod.)
- QED radiative corrections
 - known to be significant at HERA
 - devise strategies to control them i.e., reconstruct true x, Q^2 reliably
 - exploit different methods to reconstruct x,Q^2 ("electron", "Jacquet-Blondel", "combined")


needs to be studied in more detail but expected to be under good control Aschenauer, Spiesberger

Monte Carlo tools at hand

OPPORTUNITIES IN INCLUSIVE (UN)POLARIZED DIS

special interest in polarized PDFs

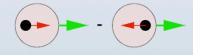
holy grail: proton spin sum - a key measurement at eRHIC?

 $A^{+}=0$ gauge version

Jaffe, Manohar; Ji; ...

$$\frac{1}{2}\hbar = \langle P, \frac{1}{2} | J_{\text{QCD}}^z | P, \frac{1}{2} \rangle = \sum_{q} \frac{1}{2} S_q^z + S_g^z + \sum_{q} L_q^z + L_g^z$$

total u+d+s quark spin

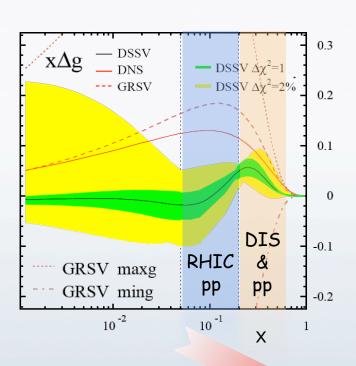

gluon spin

angular momentum

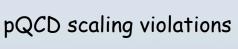
"quotable" properties of the nucleon

$$\Delta f(x) \equiv f_{+}^{N_{+}}(x) - f_{-}^{N_{+}}(x)$$

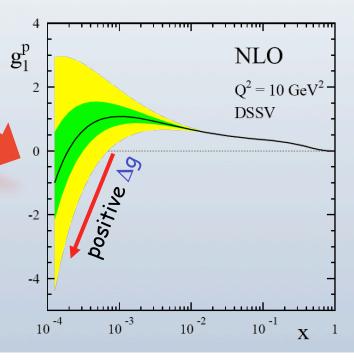
• requires good knowledge of $\Delta g(x)$ and $\Delta \Sigma(x)$ for a given Q^2 not to mention orbital angular momentum (OAM)



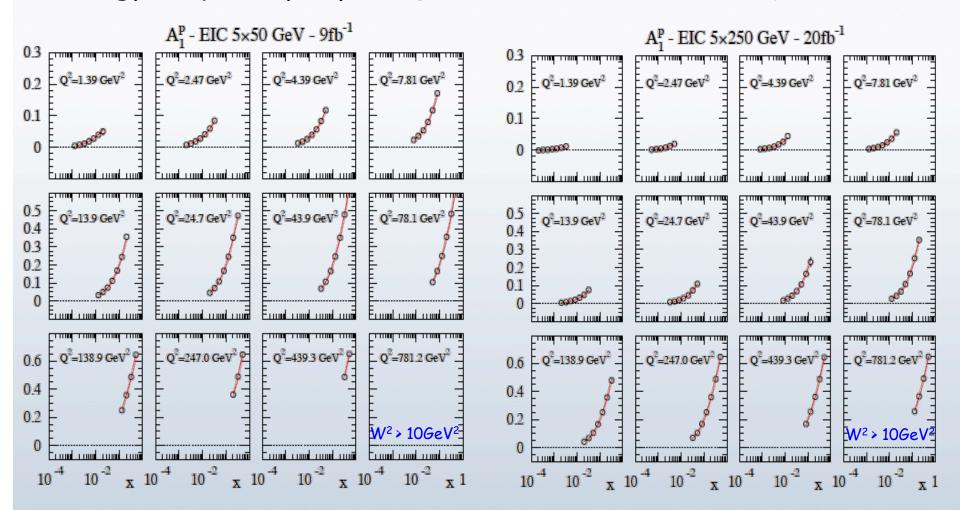
- low x needed to capture most of the 1st moment integrals, e.g. $S_g = \int_0^1 \Delta g(x) dx$
- however, should not focus too much on 1^{st} moment; want to know full x-dep.!
- picture emerging from present DIS & RHIC data still fuzzy and inconclusive


what can be achieved for Δg ?

current status:


DSSV global fit de Florian, Sassot, MS, Vogelsang

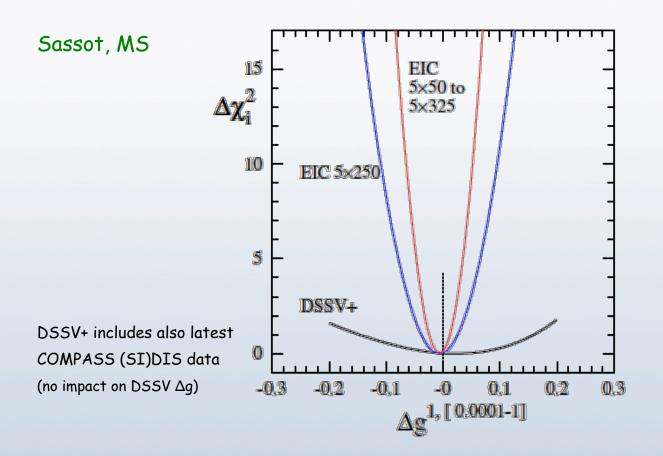
- low x behavior unconstrained
- no reliable error estimate for 1st moment $\int_0^1\!dx\,\Delta g(x,Q^2)$ (entering spin sum rule)
- find $\int_{0.05}^{0.2} \!\!\! dx \, \Delta g(x,Q^2) pprox 0$



$$\frac{dg_1}{d\log(Q^2)} \propto -\Delta g(x, Q^2)$$

polarized DIS @ eRHIC and impact on $\Delta g(x,Q^2)$

strategy to quantify impact: global QCD fits with realistic toy data

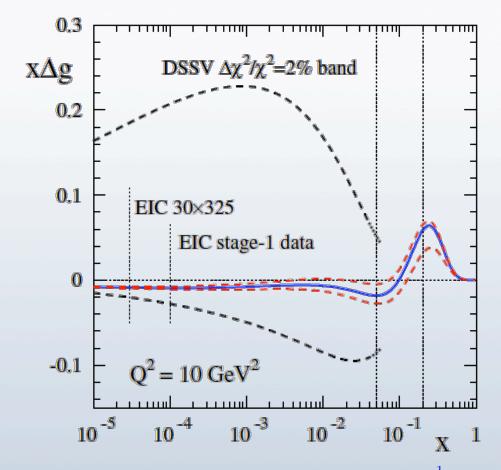


• DIS statistics "insane" after ≈ 1 month of running (errors MUCH smaller than points in plots)

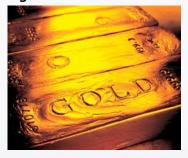
measurements limited by systematics - true for most of ep case

what can be achieved for Δg ? - cont'd

how effective are scaling violations already at stage-1 (recall $\times_{min} \approx 1.6 \times 10^{-4}$)


 χ^2 profile slims down significantly already for stage-1 (one month of running)

• with 30×325 one can reach down to $x \approx 3 \times 10^{-5}$ (impact needs to be quantified)


what can be achieved for Δg ? - cont'd

what about the uncertainties on the x-shape ...

Sassot, MS

golden measurement

- ✓ unique
- √ feasible
- √ relevant

• even with flexible DSSV x-shape we can now determine $\int_0^1\!dx\,\Delta g(x,Q^2)$ to about \pm 0.07

• work in progress: try weird x-shapes below $x = 10^{-4}$ to improve/check error estimate

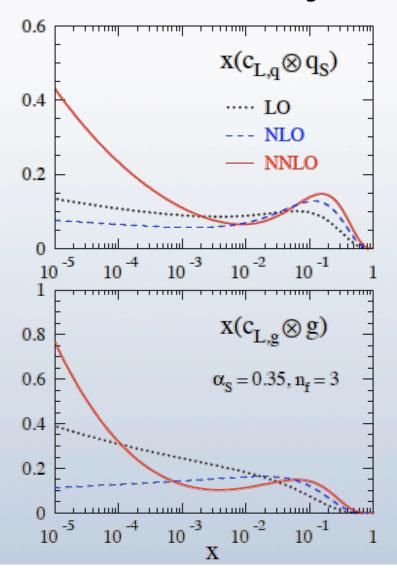
other opportunities in polarized DIS

• in 10+ years the NNLO corrections will be available (certainly needed to match precision of data!)

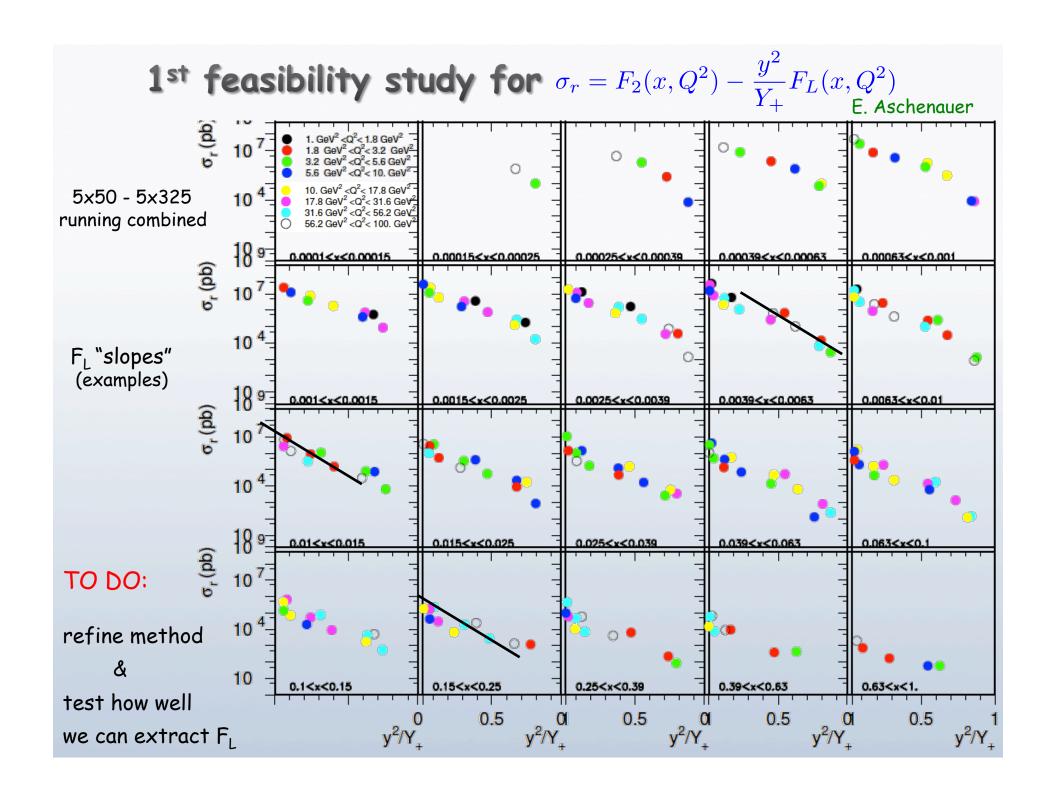
Moch, Vogt, ...

- watch out for surprises at small-x = deviations from DGLAP $\frac{\text{Bartels, Ermolaev, Ryskin;}}{\text{Greco, Troyan; ...}}$ (expected to set in earlier than in unpol. DIS; showing up as tension in global fits (?))
- strong coupling from scaling violations? (needs to be worked out / quantified)
- Bjorken sum rule: $\int_0^1 dx \left[g_1^p(x,Q^2) g_1^n(x,Q^2) \right] = \frac{1}{6} C_{\rm Bj} \left[\alpha_s(Q^2) \right] g_A$
 - C_{Bj} known to $O(\alpha_s^4)$ Kodaira; Gorishny, Larin; Larin, Vermaseren; Baikov, Chetyrkin, Kühn, ...
 - but not a tool to determine α_s (1% change in α_s translates in 0.08% change of Bj sum)
 - experimental challenge: effective neutron beam (3He), very precise polarimetry, ...
 - theor. motivation for precision measurement: Crewther relation
 non-trivial relation of two seemingly unrelated quantities

Adler function D(Q²) in e⁺e⁻
$$\xrightarrow{\sim 1 + \frac{\beta(\alpha_s)}{\alpha_s}K(\alpha_s)}$$
 Bj sum $C_{Bj}(Q^2)$ in DIS exact conformal symmetry


unpolarized DIS at eRHIC

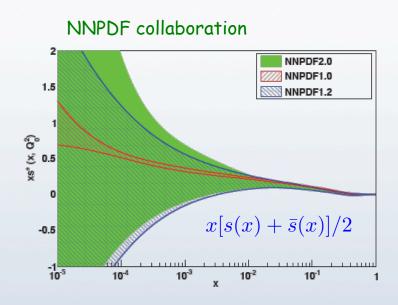
- precision data for F_2 may help to resolve some issues with old fixed target data (nice to have, but only "incremental" with little impact; cannot beat HERA at small x)
- longitudinal structure function F_L basically missed at HERA (fixed E_e , E_p) interesting for several reasons:
 - hard to get; recall $\sigma_r=F_2(x,Q^2)-\frac{y^2}{Y_+}F_L(x,Q^2)$ $y=Q^2/xS$ $Y_+=1+(1-y)^2$
 - \rightarrow contributes mainly at large y (= lowest x for any given Q²)
 - strategies:
 - indirect measurement from deviation of σ_r from "F₂ only fit"
 - slope of y^2/Y_+ for different S at fixed x and Q^2 strength of eRHIC
 - F_L starts only at $O(\alpha_s)$ (due to helicity conservation)

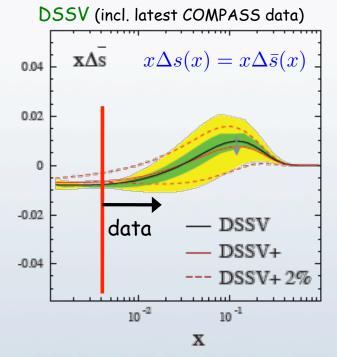

$$F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} F_2(z) + 8 \sum_q e_q^2 \left(1 - \frac{x}{z} \right) z g(z) \right]$$
 this is the LO expression

longitudinal structure function F_L - cont'd

best motivation for a precise measurement at eRHIC in 10+ years is not so much to determine the gluon density but to understand pQCD series

- known up to three loops (NNLO)
 Moch, Vermaseren, Vogt
- leading small x term $\sim \ln x$ appears first at NNLO (very different from the "usual" F₂)
- sensitivity to small x term best at lowish Q^2 values (few GeV^2)




selected open issues in flavor structure

strangeness is one of the least known quantities in hadronic physics

- both unpolarized and polarized - where significant progress is difficult w/o eRHIC

- substantial uncertainties
- known issues with HERMES data at large x
- hot topic: $s(x) \bar{s}(x)$

- surprise: △s small & positive from SIDIS data
- but 1st moment is negative and sizable due to "constraint" from hyperon decays (F,D) (assumed SU(3) symmetry debatable M. Savage)
- drives uncertainties on $\Delta\Sigma$ (spin sum)

we really need to determine it better! (including their u,d quark colleagues)

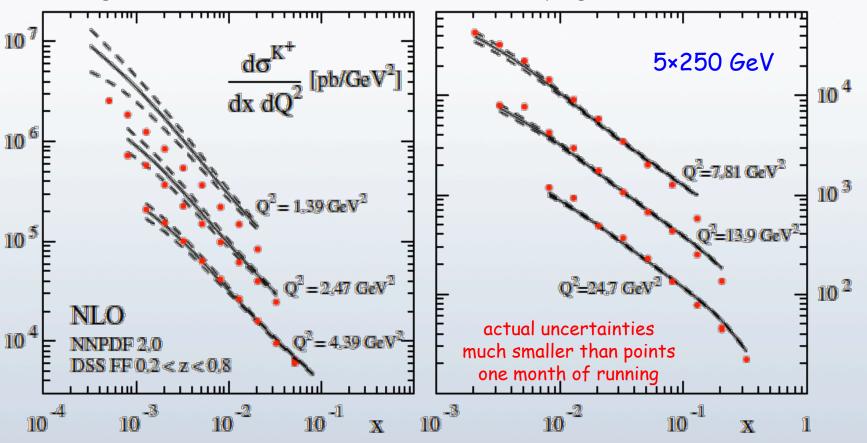
idea: flavor separation with semi-inclusive DIS

at LO:
$$\int_{\mathbf{f}}^{\gamma^*} d(\Delta) \sigma^H \simeq \sum_{q=u,\bar{u},\dots,\bar{s}} (\Delta) q(x,Q^2) \frac{D_q^H(z,Q^2)}{\operatorname{extra weight for each quark}}$$

allows for full flavor separation if enough hadrons are studied actual analysis of data requires NLO QCD where x, z dependence is non-trivial

relevant quantities/measurements:

- (un)polarized SIDIS cross sections (we don't want to study asymmetries anymore at eRHIC)
- for u, ubar, d, dbar, s, sbar separation need $H = \pi^+, \pi^-, K^+, K^-$ (nice to have more)


complications/additional opportunities:

- PDF information entangled with fragmentation functions
- should be not a problem: already known pretty well (DSS de Florian, Sassot , MS) more data (Belle, BaBar, RHIC, LHC, ...)

1st studies done for charged kaons

Aschenauer, MS

compute K⁺ yields at NLO with 100 NNPDF replicas z integrated to minimize FF uncertainties (work in progress)



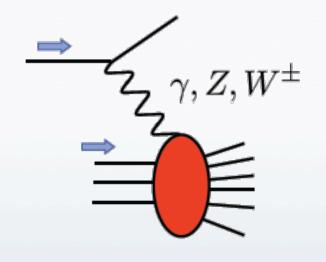
PYTHIA agrees very well (despite very different hadronization model)

--> confidence that we can use MC to estimate yields & generate toy data

kaon studies - cont'd

how about K^- (relevant for $s-\bar{s}$ separation)

next step: assess impact of data on PDFs with "reweighting method" (using full set of stage-1 energies: 5×50 - 5×325)


Giele, Keller; NNPDF

in progress: include also π^{\pm} ; polarized SIDIS and impact on global fit

CHARGED & NEUTRAL CURRENT PROBES

main objective / why interesting

at high enough Q2 electroweak probes become relevant

- neutral currents (y, Z exchange, yZ interference)
- charged currents (W exchange)

parameterized by new structure functions which probe combinations of PDFs different from photon exchange --> flavor decomposition without SIDIS, e-w couplings

hadron-spin averaged case: studied to some extent at HERA (limited statistics)

hadron-spin difference:

Wray; Derman; Weber, MS, Vogelsang; Anselmino, Gambino, Kalinowski; Blumlein, Kochelev; Forte, Mangano, Ridolfi; ...

$$\frac{d\Delta\sigma^{e^{\mp},i}}{dxdy} = \frac{4\pi\alpha^2}{xyQ^2} \left[\pm y(2-y)x\hat{g}_1^i - (1-y)\hat{g}_4^i - y^2x\hat{g}_5^i \right] \quad i = NC, CC$$

unexplored so far - unique opportunity for eRHIC

what can be learned

in the parton model (for simplicity)

NC:

$$\begin{split} \left[g_{1}^{\gamma},g_{1}^{\gamma Z},g_{1}^{Z}\right] &= \frac{1}{2}\sum_{q}\left[e_{q}^{2},2e_{q}g_{V}^{q},(g_{V}^{q})^{2}+(g_{A}^{q})^{2}\right]\left(\Delta q + \Delta\bar{q}\right) \\ \left[g_{5}^{\gamma},g_{5}^{\gamma Z},g_{5}^{Z}\right] &= \frac{1}{2}\sum_{q}\left[\mathbf{0},e_{q}g_{A}^{q},g_{V}^{q}g_{A}^{q}\right]\left(\Delta q - \Delta\bar{q}\right) \end{split}$$

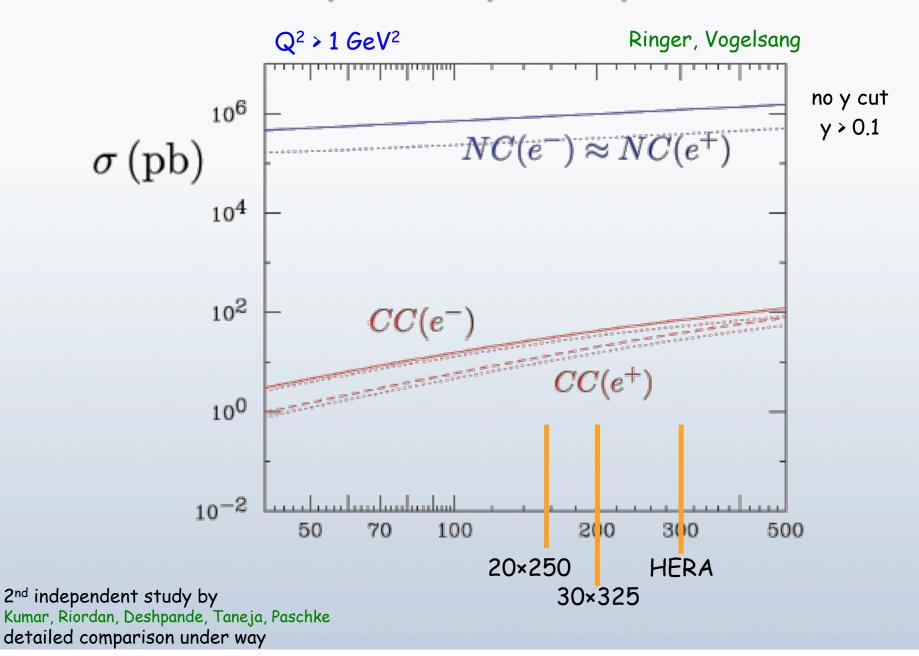
CC:

$$g_1^{W^-} = (\Delta u + \Delta \bar{d} + \Delta \bar{s} + \Delta c)$$

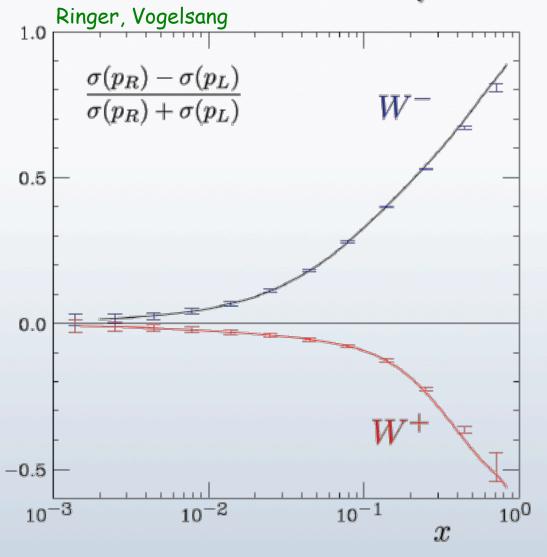
$$g_1^{W^+} = (\Delta \bar{u} + \Delta d + \Delta s + \Delta \bar{c})$$

$$g_5^{W^+} = (\Delta \bar{u} - \Delta d - \Delta s + \Delta \bar{c})$$

$$g_5^{W^-} = (-\Delta u + \Delta \bar{d} + \Delta \bar{s} - \Delta c)$$


requires a positron beam

NLO QCD corrections all available


de Florian, Sassot; MS, Vogelsang, Weber; van Neerven, Zijlstra; Moch, Vermaseren, Vogt

- can be easily put into global QCD analysis
- enough combinations for a flavor separation (no fragmentation)

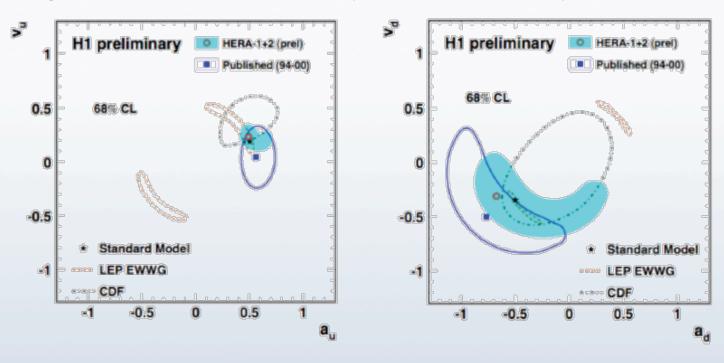
feasibility - 1st exploratory studies

feasibility - cont'd

20 × 250 GeV Q² > 1 GeV² 0.1 < y < 0.9 10 fb⁻¹

DSSV PDFs

very promising!


even doable with 5x250 GeV

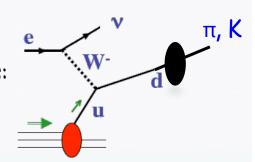
impact on global fits to be quantified

$$A^{W^{-}} = \frac{(\Delta u + \Delta c) - (1 - y)^{2} (\Delta \bar{d} + \Delta \bar{s})}{(u + c) + (1 - y)^{2} (\bar{d} + \bar{s})} \quad A^{W^{+}} = \frac{(1 - y)^{2} (\Delta d + \Delta s) - (\Delta \bar{u} + \Delta \bar{c})}{(1 - y)^{2} (d + s) + (\bar{u} + \bar{c})}$$

other avenues to be explored further

accessing fundamental electroweak parameters at an ep collider

 a_q mainly constrained by xF_3^{YZ} v_a mainly constrained by F_2^{Z}

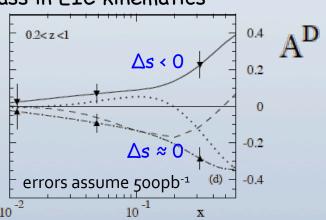

Can we do better than HERA? What does it take (energy, luminosity)?

needs to be investigated

(prominently featured in LHeC case)

other avenues to be explored further - cont'd

SIDIS through e-w boson exchange
 some studies available from "Future Physics at HERA" workshops:
 Maul, Contreras, Ihssen, Schafer; Contreras, De Roeck, Maul
 (based on PEPSI Monte Carlo)

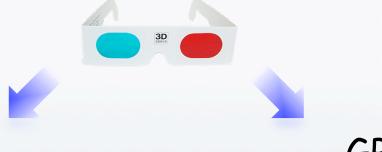

TO DO: re-do for eRHIC kinematics

CC charm production as a probe of strangeness

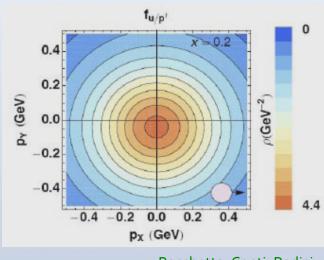
idea: at $O(a_s^0)$ $W^+s'\to c$ $s'\equiv |V_{cs}|^2s+|V_{cd}|^2d$ at $O(a_s^1)$ $W^+g\to c\bar s'$ can potentially spoil sensitivity to strangeness also, need to keep full dependence on charm mass in EIC kinematics

- NLO available (pol + unpol) Kretzer, MS
- again, studies performed for HERA
- gluon channel suppressed for z > 0.2 in D meson production

TO DO: exhume codes & re-do for eRHIC

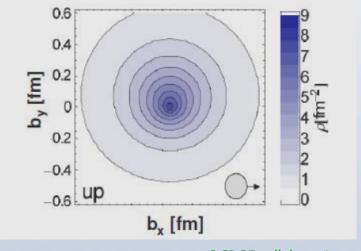


TOWARDS 3D-IMAGING OF THE PROTON


two kinds of "3D images"

goal: going beyond longitudinal momentum structure

TMDs


2+1 D picture in momentum space

Bacchetta, Conti, Radici

GPDs

2+1 D picture in impact-parameter space

QCDSF collaboration

transverse structure: momentum vs. position

relativistic system/uncertainty principle: can localize only in two dimensions

TMDs

- intrinsic transverse motion
- spin-orbit correlations = indicator of OAM
- role of gluons "accompanying" partons (Wilson lines or gauge links)
- non-trivial factorization
- matching between small k_T (TMDs) and large, perturbative k_T (twist-3 parton correl.)

GPDs

- collinear but long. momentum transfer
- indicator of OAM; access to Ji's total $J_{q,q}$
- existing factorization proofs
- "dipole model" in small x (large Q^2) limit

gluon and sea distributions largely unknown -> eRHIC

no direct, model-indep. connection known between TMDs and GPDs

average transverse mom. and position not Fourier conjugates:

average transv. mom <---> position difference transv. mom. transfer <---> average position

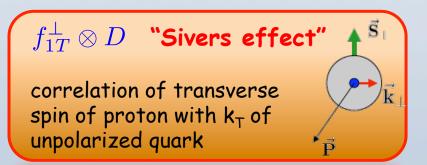
"high level connection" through Wigner phase space distr. $W(x,k_T,b_T)$

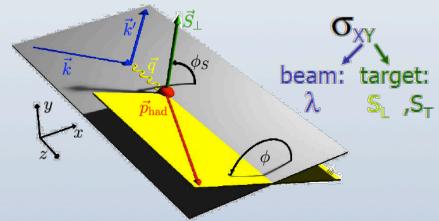
accessing TMDs in SIDIS

- many observables possible in lp -> lhX if intrinsic k_T included and Φ kept e.g. "left-right asymmetries" in the direction of produced hadron
- seen at HERMES and COMPASS (but mainly valence quark region & large uncertainties)

SIDIS cross section:

Kotzinian; Mulders, Tangermann; Boer, Mulders. ...


$$d\sigma^{h}(x,Q^{2},z,P_{T}^{h},\phi,\phi_{S},\lambda) = d\sigma_{UU} + \cos 2\phi \, d\sigma_{UU} + S_{L} \sin 2\phi \, d\sigma_{UL} + \lambda S_{L} d\sigma_{LL}$$


$$\Delta q \otimes D$$

$$+S_T \left[\sin(\phi + \phi_S) d\sigma_{UT} + \sin(\phi - \phi_S) d\sigma_{UT} + \sin(3\phi - \phi_S) d\sigma_{UT} \right]$$

$$f_{1T}^{\perp} \otimes D$$

$$+\lambda S_T \cos(\phi - \phi_S) d\sigma_{LT} + \frac{1}{Q}...$$

TMDs @ eRHIC

figure taken from B. Musch

with eRHIC we will measure the entire zoo of TMD functions

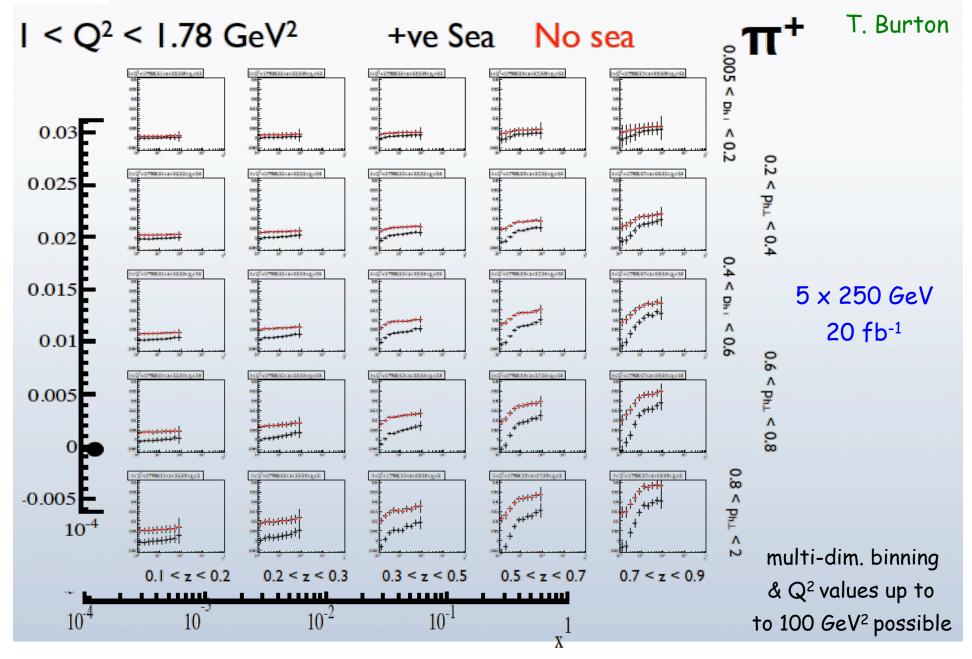
(plus additional functions for fragmentation)

difficult to digest & sell to NP community

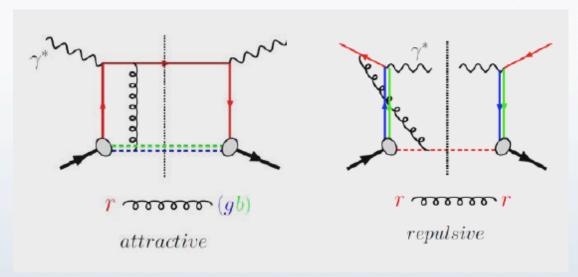
N q	U	L	Т
U	$\mathbf{f_1}$		h ₁ -
L		8 1	hil
Т	fin	g _{1T}	

--> focus on unpolarized f_1 and Sivers function:

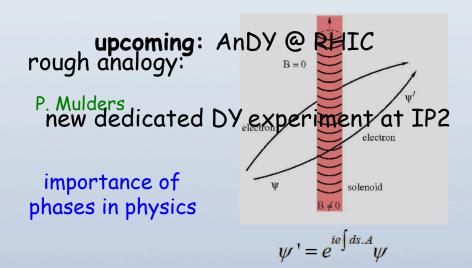
$$f_{q/P^{\uparrow}}(x, \mathbf{k}_{\perp}, S) = f_1(x, \mathbf{k}_{\perp}^2) - \frac{\mathbf{S} \cdot (\hat{\mathbf{P}} \times \mathbf{k}_{\perp})}{M} f_{1T}^{\perp}(x, \mathbf{k}_{\perp}^2)$$

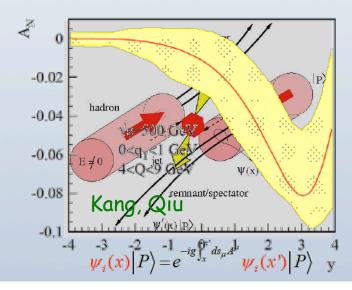

 k_{T} dep. gluon plays prominent role at small x rather direct access to saturation scale $Q_{s}(x)$ (e.g. through dijet correlations in eA)

access to 3D imaging in momentum space non-trivial role of Wilson lines role of spin-orbit correlations & OAM



Sivers TMD @ eRHIC: 1st feasibility study


TMDs: physics of Wilson lines


profound consequence of gauge invariance: colored partons "surrounded" by gluons (technically realized by Wilson lines)

$$f_{1T}^{\perp \text{SIDIS}} = -f_{1T}^{\perp \text{DY}}$$

Sivers fct. has opposite sign
when gluons couple "after"
quark scatters (SIDIS) or
"before" quark annihilates (DY)
(and would be zero without gluons)

matching low and high p_T physics

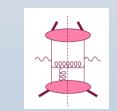
- TMDs encode physics for small transverse momenta (or $p_{\scriptscriptstyle T}$ differences) and $Q^2 >> p_{\scriptscriptstyle T}$
- if p_T is large, it can be treated perturbatively
- no sharp boundary between "intrinsic" and "radiative" p_{\top} --> $\boldsymbol{matching}$ \boldsymbol{region}

example: SIDIS (hadron mass M, $q_{\rm T}^2 \approx {\rm p_{T,H}}^2/{\rm z}$)

Low Intermediate High $q_T^2 \ll Q^2$ $M^2 \ll q_T^2 \ll Q^2$ $M^2 \ll q_T^2$ q_T^2

9T Representation of the figures taken from A. Bacchetta

Not to be taken too literally!


Collineat

TMD

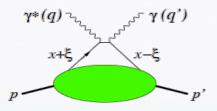
O

1 2 4 6 8 10

collinear factorization

twist-3 parton-parton correlation

the leading high- p_T part should match with the p_T tail of the TMD

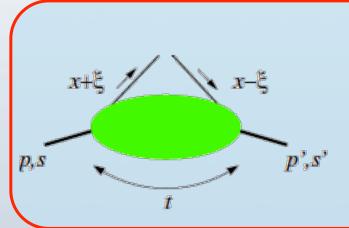

Collins, Soper, Sterman; Ji, Qiu, Vogelsang, Yuan

Q [GeV]


TMD factorization

GPDs: access to transverse position

need to measure & study exclusive processes:



deeply virtual Compton scattering (DVCS)

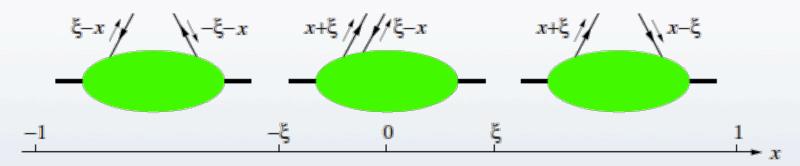
exclusive meson production

generalized parton densities needed to describe such processes:

GPDs depend on x, ξ , t, Q^2

convenient: symmetric choice of mom. fractions

• x, ξ : mom. fractions w.r.t. $P\equiv\frac{1}{2}(p+p')$ where $\xi=(p-p')^+/(p+p')^+$ in DVCS: x integrated and $\xi=x_B/(2-x_B)$


• t: trade for trans. momentum transfer Δ

 GPDs represent interference between amplitudes for different nucleon states (in general not a probability)

GPDs: some important properties

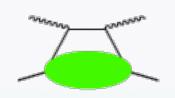
distinguish two kinematical regimes:

probes emission of mesonic d.o.f.

no PDF counterpart

partons emitted and reabsorbed reduce to PDFs in forward limit

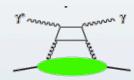
• 4 GPDs per flavor: $H^i(x,\xi,t,Q^2), E^i(x,\xi,t,Q^2), \tilde{H}^i(x,\xi,t,Q^2), \tilde{E}^i(x,\xi,t,Q^2)$ unpolarized partons polarized partons


e.g.
$$\int \frac{dz^-}{4\pi} e^{ixP^+z^-} \langle p', s' | \bar{q}(-\frac{z}{2}) \, \mathcal{W} \, \gamma^+ q(\frac{z}{2}) | p, s \rangle_{z^+=0,\mathbf{z}=\mathbf{0}}$$

$$= \quad H^q \, \bar{u}(p',s') \gamma^+ u(p,s) + E^q \, \bar{u}(p',s') \frac{i}{2m_p} \sigma^{+\alpha}(p'-p)_\alpha u(p,s)$$
 recover quark PDFs for decouples for $\mathbf{p} = \mathbf{p}'$; involves helicity flip
$$s = s', \xi = 0, t = 0$$
 -> indicator of OAM, key part of Ji sum rule

transverse imaging through GPDs

initial studies (stage 1):

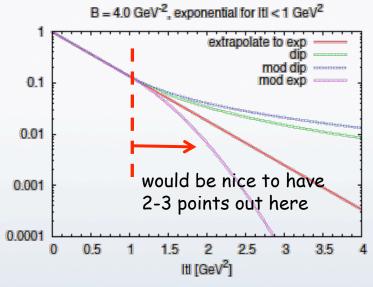

find for DVCS amplitude at LO approximation:

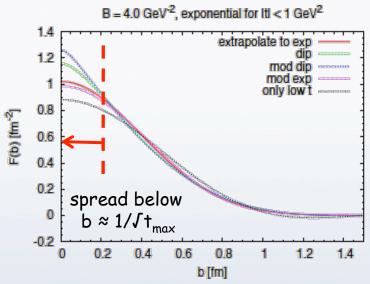
$$\mathcal{H} = \sum_{q} e_q^2 \int_{-1}^{1} dx \left[\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right] H^q(x, \xi, t, Q^2)$$

--> imaginary part determines $H(x,\xi=x,t)$ at "cross over line"

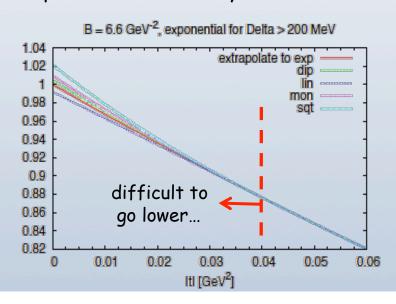
at NLO: access also DGLAP region $|x| \ge \xi$ and gluon GPD

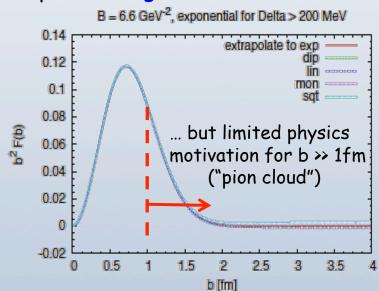
measure its t dependence and Fourier transform to impact parameter space

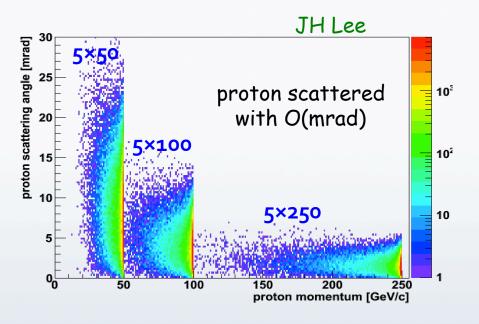

$$F(b) = \frac{1}{(2\pi)^2} \int d^2 \mathbf{\Delta} e^{-i\mathbf{\Delta}\mathbf{b}} \sqrt{\frac{d\sigma}{dt}} = \frac{1}{2\pi} \int_0^\infty d\Delta \, \Delta \, J_0(\Delta b) \sqrt{\frac{d\sigma}{dt}} \qquad \text{[t = -$\Delta2]}$$

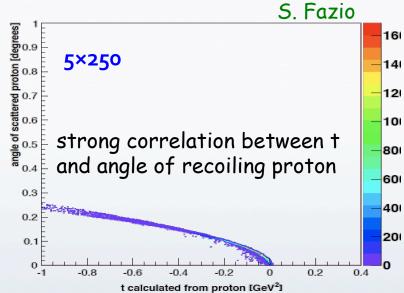

- •challenge: cannot measure for arbitrary large or very small Δ
 - what range in t (or Δ) do we need to limit extrapolation uncertainties?
 - experimental feasibility & requirements: good t resolution, guarantee exclusivity (need to integrate Roman pots into design to detect low p_T protons)

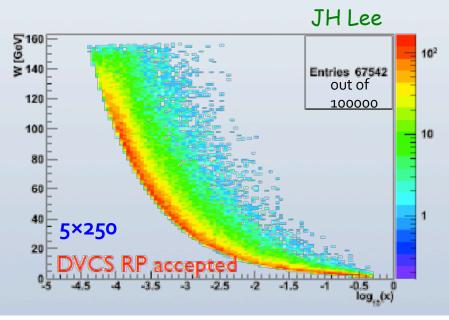
imaging through GPDs - required t-range


extrapolation uncertainty from large t and its impact on small b:

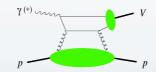

M. Diehl




extrapolation uncertainty from small t and its impact on large b:



imaging through GPDs - some experimental aspects



- large t acceptance
 vs magnet aperture
- small t acceptance
 vs beam size
- need to integrate Roman pots
- · challenging IR design

imaging through GPDs - ultimate goal

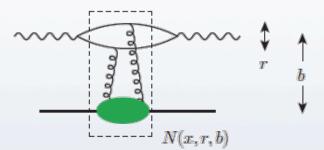
- reconstruct full ξ dependence of GPDs from Q² evolution / scaling violations global analysis framework already in place (used to analyze HERA data) Muller, Kumericki, Passek-Kumericki need to study how strongly extrapolation to ξ =0 will depend on assumptions
- detailed studies of exclusive vector meson production

• perform Fourier transformation for GPDs at ξ =0

e.g.
$$q(x,b^2)\simeq \int d^2 \Delta e^{-ib\Delta} H^q(x,\xi=0,t=-\Delta^2)$$
 where $\Delta=p'-p$

gives distribution of quarks with

- longitudinal momentum fraction x
- transverse distance b from proton center
- connection to energy-momentum tensor & OAM: $\frac{1}{2}\int dx x (H^q+E^q)=J^q(t)$
- GPDs contain form factors and PDFs (in certain limits)


$$\int_{-1}^{1} dx \{H, E, \tilde{H}, \tilde{E}\} \qquad s = s', \xi = 0, t = 0$$

aside: color dipole model

describes variety of ep processes at small x in an alternative framework (inclusive DIS; inclusive diffraction; exclusive processes)

underlying physical picture:

DIS in the proton rest frame can be viewed as the photon splitting into a quark-antiquark pair ("color dipole") which scatters off the proton (= "slow" gluon field)

- FT links rel. transverse momentum to transverse distance r of color dipole
- empirically valid for x below about 0.01
- t dependence: exp(-b|t|); b = trans. dist. of colliding objects
- phenomenological models for dipole cross section, e.g., Wusthoff, Golec-Biernat

comparison to GPD "language":

- dipole: specific representation of k_T factorization, predicts small x behavior at fixed Q^2
- GPD: predicts Q^2 dependence for all x (in large Q^2 limit)
- equivalent in "double limit": small x and high Q²

HEAVY FLAVORS

treatment of heavy quarks

(= getting used to acronyms)

heavy quarks: $m_Q \gg \Lambda_{QCD}$ (i.e., charm, bottom, top)

- no mass singularities -> no evolving, genuine heavy quark PDFs
- ullet asymptotically large logarithms in DIS $\sim \ln Q/m_Q$

different ways to treat heavy quarks in calculations: (use charm in DIS as an example)

- $Q \gg m_c$ fixed flavor-number scheme FFNS only u, d, s, g are active partons; charm produced though $\gamma^* g \to c \bar c$ NLO parton-level MC (HVQDIS) Harris, Smith
- $Q \gg m_c$ zero mass variable flavor-number scheme ZM-VFNS standard evolution with massless partons above "threshold" Q = m_c
- $Q\gg m_c$ general mass variable flavor-number scheme GM-VFNS attempt to match two distinct theories (n_f =3+ m_c vs. n_f =4) needs some matching & "interpolating" coefficient fcts. details matter in global fits!

not a priori clear if / where logs matter

treatment of heavy quarks - cont'd

each PDF group has its own favorite scheme:

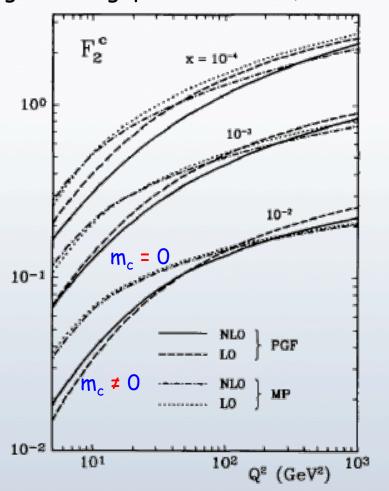
CTEQ: ACOT, ACOT-X, S-ACOT, S-ACOT-X; MSTW: TR, TR'; NNPDF: FONLL; ABKM: BMSN

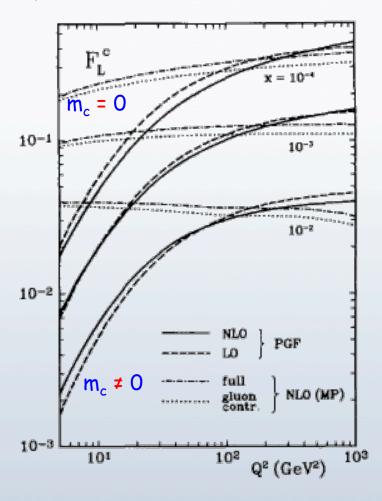
but VFNS must be derived from FFNS: relations between n_f and n_f+1 partons

Buza, Matiounine, Smith, van Neerven; Bierenbaum, Blümlein, Klein;

BMSN construction for F2charm: (used by Alekhin, Blümlein, Klein, Moch)

$$\begin{array}{ll} F_2^c(n_f+1,x,Q^2) &= \\ &F_2^{c,FFNS}(n_f,x,Q^2) + F_2^{c,ZMVFNS}(n_f+1,x,Q^2) - F_2^{c,asym}(n_f,x,Q^2) \\ &\text{exact massive part} & \text{zero mass part} & \text{asymptotic part} \\ &m_\text{c} \neq 0 & m_\text{c} = 0 & \ln Q/m \\ &\ln Q/m_\text{c} \text{ resummed} \end{array}$$

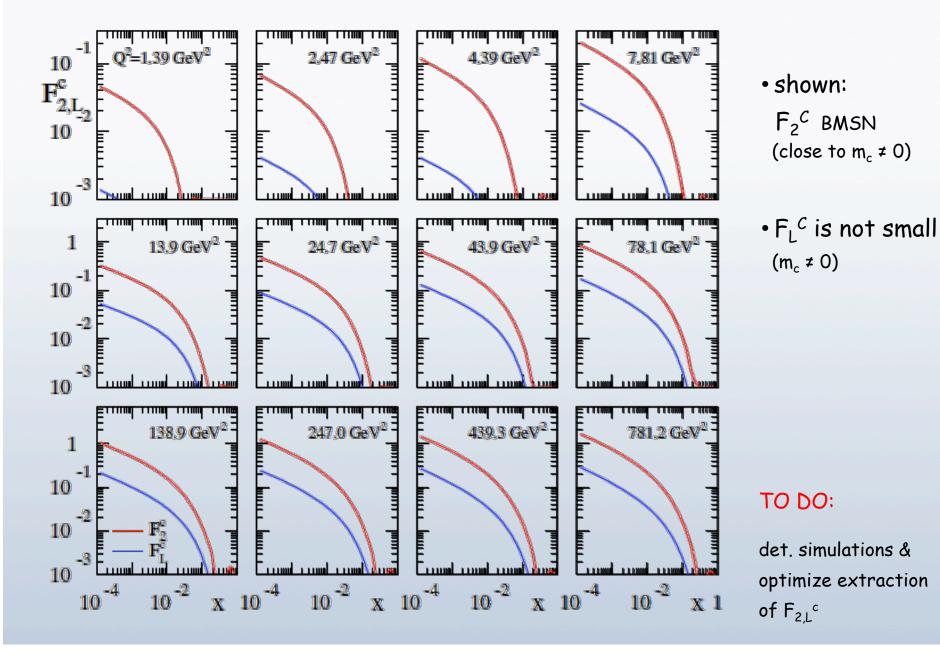

another issue: quark masses in PDF fits


- choice of m_c part of uncertainty
- all fits use pole mass so far
- · consistently lower than PDG value
- latest: running mass in DIS fits Alekhin, Moch find $m_c(m_c) = 1.01 \pm 0.09(exp) \pm 0.03(th)$

m _c [GeV]		
ABKM	1.43±0.1	
MSTW	1.40	
CTEQ 6.6	1.30	
PDG	1.66+0.09-0.15	

heavy quarks - do they ever become "light" ??

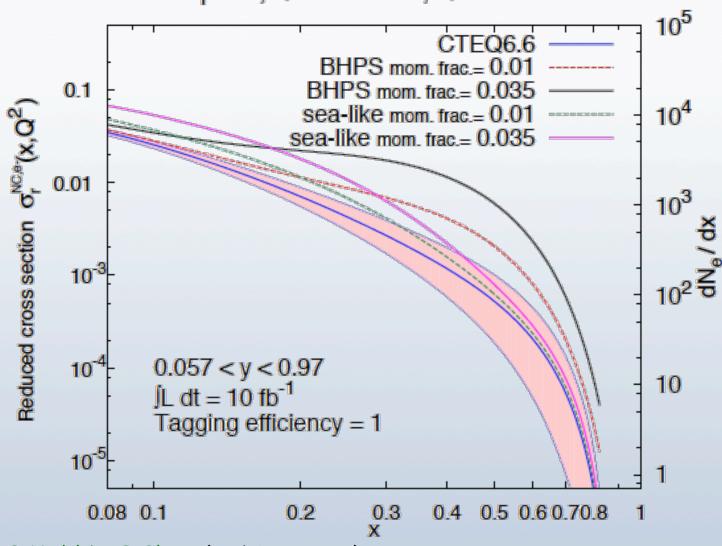
long-standing question ... (example from '94 Glück, Reya, MS)


- even at high Q^2 or W^2 , $m_c = 0$ approx. not effective
- no smooth transition/matching
- existing HERA data described well with $m_c \neq 0$
- \bullet differences more dramatic for $F_{L}{}^{c}$

never measured

target for eRHIC

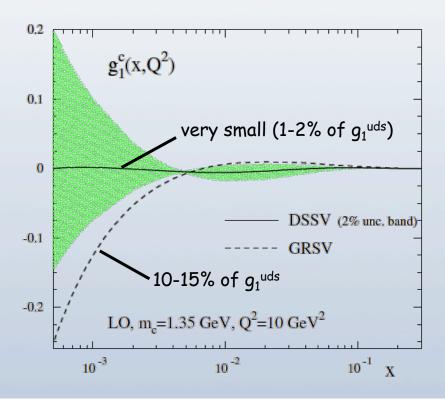
expectations for F_2^c and F_L^c

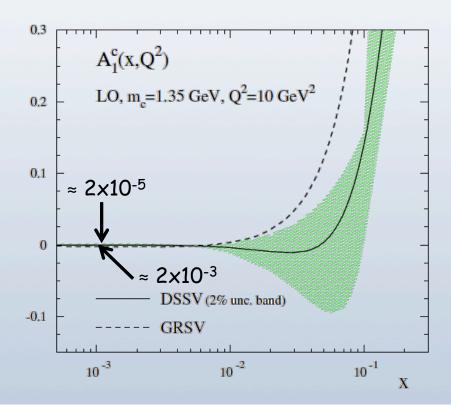

ABKM (S. Alekhin)

intrinsic charm?

can we finally settle this?

 e^{-} p DIS, $\sqrt{s} = 105$ GeV, $Q^{2} = 625$ GeV²




M. Guzzi, P. Nadolsky, F. Olness (work in progress)

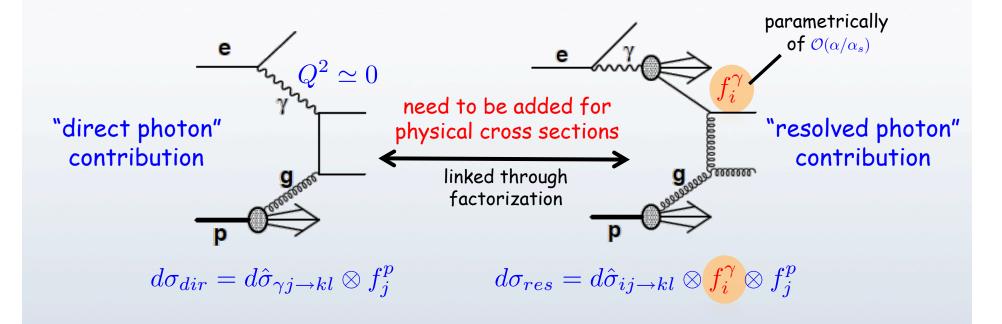
charm contribution to pol. DIS: g_1^c

- so far safely ignored: <<1% to existing g_1 fixed-target data
- \cdot numerical relevance at eRHIC depends strongly on size of Δg
- need massive Wilson coefficients (charm not massless for most of eRHIC kinematics)
 so far only known to LO (NLO is work in progress Kang, MS)

some expectations: (need to be studied in detail)

PHOTOPRODUCTION

main objective / why interesting

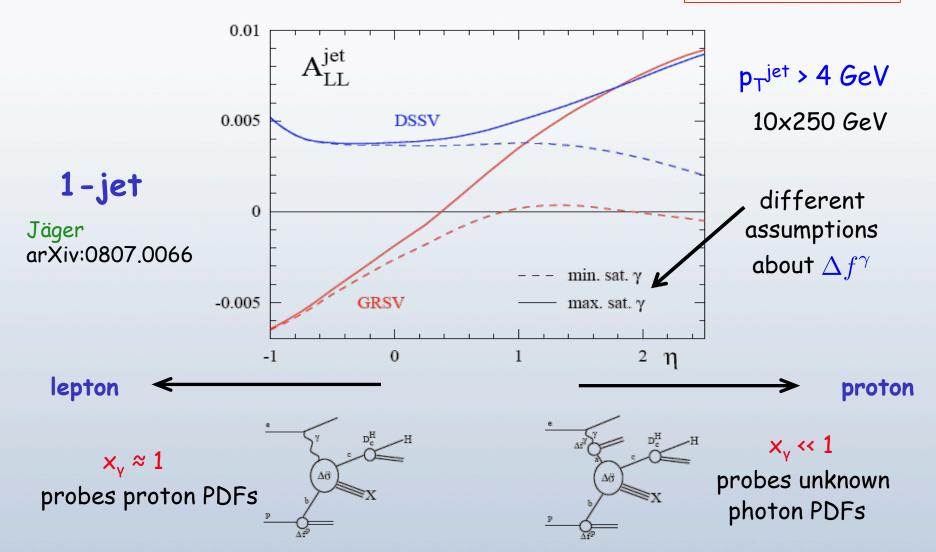

- make use of bulk of events sitting at low Q²
- access to non-perturbative structure of photons

why should I bother about yet another non perturbative function?

- needed for consistent factorization in all processes with quasi-real photons
- ILC has a program for $\gamma\gamma$ physics perhaps even with polarization
- unpolarized photon structure not well known: LEP $\gamma^*\gamma$ DIS, some HERA data (a global analysis was never performed; no error estimates)
- polarized photon structure is completely unknown
- non-trivial inhomogeneous Q² evolution (due to pointlike coupling of photons to quarks)
- pQCD framework more involved than for DIS-type processes

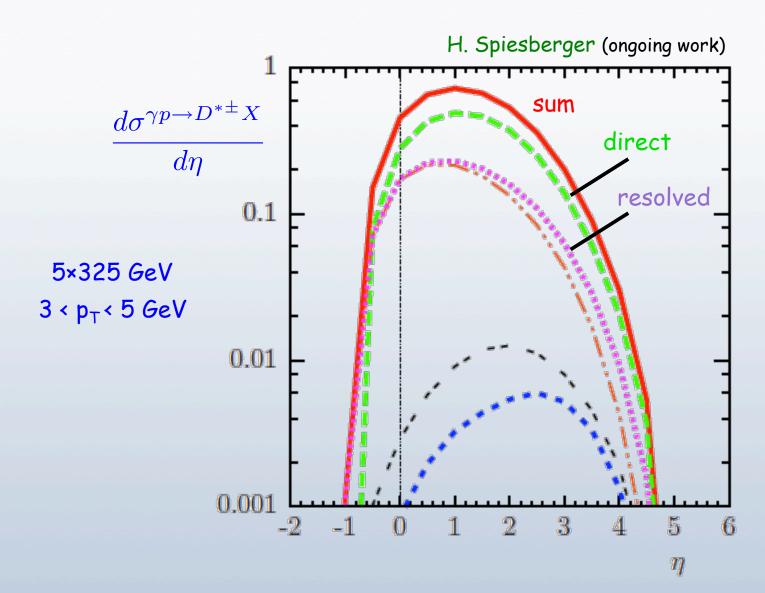
photoproduction basics

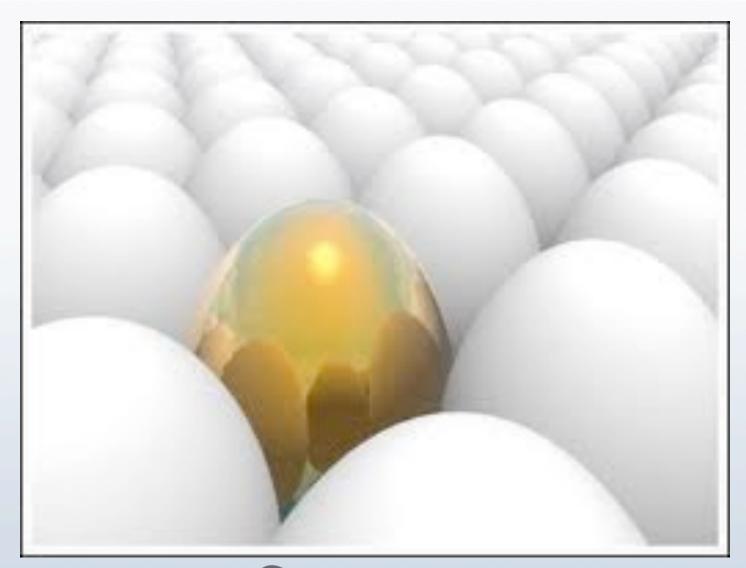
cross sections consist of two contributions, e.g. at $\mathcal{O}(\alpha\alpha_s)$



- most processes of interest (charm, hadrons, jets, photons) are known to NLO (pol+unp)
- strategies to enhance sensitivity to resolved part known from HERA:
 - single-inclusive: need to look into rapidity dependence
 - di-jets: can define resolved sample (LO only) $x_{\gamma}^{obs} = \frac{E_T^{jet1} e^{-\eta^{jet1}} + E_T^{jet2} e^{-\eta^{jet2}}}{2yE_e}$

example I: inclusive jets (or hadrons)


• polarized photon structure from 1-jet production (very similar: 1-hadron production Jäger, MS, Vogelsang)


TO DO: simulations & estimate uncertainties

example II: charm

unpolarized photoproduction of charm

SUMMARY
"GOLDEN PDF MEASUREMENTS"

we have made quite some progress in making the science case for eRHIC several unique measurements have been identified:

excellent prospects to determine $\Delta g(x)$ from scaling violations in DIS

full flavor separation of quark sea in large x, Q^2 range from SIDIS

novel electroweak probes of polarized PDFs & electroweak precision tests

3D imaging of the proton through TMDs and GPDs incl. sea quarks and gluons

understand the treatment of heavy quarks $(F_2, F_L, ...)$

explore processes involving photons in great detail

report of the INT workshop will appear in a few weeks on the arXiv

Science Deliverable	Basic Measurement	Uniqueness Feasibility Relevance	Requirements
spin structure at small x contribution of Δg , $\Delta \Sigma$ to spin sum rule	inclusive DIS	COLIN	minimal large x,Q² coverage about 10fb ⁻¹
full flavor separation in large x,Q² range strangeness, s(x)-s(x) polarized sea	semi-inclusive DIS		very similar to DIS excellent particle ID improved FFs (Belle,LHC,)
electroweak probes of proton structure flavor separation electroweak parameters	inclusive DIS at high Q²	some unp. results from HERA	20x250 to 30x325 positron beam ? polarized ³ He beam ?
spatial structure down to small x through TMDs and GPDs	SIDIS azim. asym. & exclusive processes	some results in valence region	p _T H binning, t resolution, exclusivity, Roman pots, large (x,Q²) range